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A Generalized Finite Element Method for
Solving the Helmholtz Equation in Two
Dimensions with Minimal Pollution

Ivo M. Babuska Frank Ihlenburg Ellen T. Paik
Stefan A. Sauter

Abstract

When using the Galerkin FEM for solving the Helmholtz equation in
two dimensions, the error of the corresponding solution differs substantially
from the error of the best approximation, and this effect increases with
higher wave number k.

In this paper we will design a Generalized Finite Element Method
(GFEM) for the Helmholtz equation such that the pollution effect is mini-
mal.

1. Introduction

Boundary value problems governed by the Helmholtz equation arise in many phys-
ical applications, as for example the scattering of a wave from an elastic body.
For this kind of problems the computational domain consists typically of the finite
domain of the elastic body coupled with the unbounded exterior domain for the
scattering field. In the unbounded domain the scattered wave is described by the

classical Helmholtz equation with the Laplace operator as the principal operator.or

Laplace operator replaced by the elasticity operator.
In order to solve numerically such a coupled scattering problem, the finite3d
element method is typically applied in the elastic body. For the approximation'-

In the elastic body the equation is of the same so-called Helmholtz type with the g g
]

of the scattered wave, various approaches are used, such as the boundary element

method, the method of infinite elements coupled with finite elements and the finite i
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element method where the unbounded exterior domain is replaced by a bounded
artificial domain with suitable boundary conditions on the artificial boundary (see
[8]).

In this paper we will address the Helmholtz problem for the Laplace operator
on a bounded domain as the model problem which characterizes the behavior of
the finite element method for both the Helmholtz problem of elasticity and wave
scattering.

It is known and understood (see [5]) that the accuracy of the Galerkin-FEM
deteriorates with increasing wave number. To be more concrete we have to intro-
duce a norm to measure the accuracy of our FE solution. Let € be the accuracy
we would like to achieve. Then there exists a number of elements ng = 7y (€)
such that, in the corresponding finite element space, there is a function called
“best approximation” with an error less than or equal to e. Usually the FE so-
lution needs more elements to get the same accuracy (say nga (€)). For standard
elliptic problems, the Galerkin method is quasi-optimal, meaning that the ratio
Nga /Mo is a constant. For the Helmholtz equation the situation is different. In
this case the ratio nge/ng goes to infinity with increasing wave number. We call
this non-robust behavior with respect to the wave number the “pollution effect”.

A generalization of the FEM was introduced in [1] and is called Generalized
FEM (GFEM). This method covers practically all modifications of the FEM which
lead to a sparse system matrix. In [2] two of the authors have defined a GFEM
called stabilized FEM for the Helmholtz equation in 1D with the property that
Tistabilized /Mo 1S @ constant independent of the wave number. However, in the same
paper it was proved that in the two-dimensional case there exists no GFEM such
that the ratio ngrem/no is bounded with respect to the wave number.

To explain the goal of this paper we consider the discretization of the Helmholtz
equation separately from the discretization and incorporation of the boundary
conditions, as with the finite difference method. In our paper we focus on the ap-
proximation of the Helmholtz equation in the interior of the domain by a GFEM.
The approximation of the DtN mapping for the definition of the boundary con-
dition and the effect of its discretization is not the subject of our investigation.
In matrix-algebraic terms, our task is to define the interior stencil of the system
matrix in such a way that under an optimal modeling of the boundary conditions
the ratio nyubitized/No increases as slowly as possible.

The importance of a proper approximation of the Helmholtz operator was
worked out in [2], where it was shown that, if the interior stencils lead to a




pollution, this effect cannot be countered by any discretization of the boundary
conditions.

Our paper is organized as follows:

In the next section we will study a one-dimensional model problem. We will
define the GFEM for the Helmholtz problem. We will show that the corresponding
discretization error is directly related to the difference of the so-called discrete
wave number k with the exact one. The difference k—k is called “phase lag”. Using
these results, we are able to construct a FEM with the property that k—k=0
which additionally satisfies the usual consistency conditions. We will prove that
this GFEM, called “stabilized finite element method” (SFEM) has no pollution.

In Section 3 we will define the GFEM in two dimensions and a 2-D analogy
to the phase difference k — k. It will turn out that in 2-D every GFEM has the
phase lag. We will prove that this phase lag leads to a pollution term in the error
estimates. :

In Section 4 we will define and explain a measure of the approximation quality
of the GFEM discretization for the Helmholtz equation.

In Section 5 we will define a GFEM called Quasi-Stabilized FEM (QSFEM)
which leads to the smallest possible pollution.

In the last section we will present the results of a 2-D implementation, where
we compare the quality of the quasi-stabilized FEM with the usual Galerkin FEM
and a further GFEM called generalized least squares finite element method (GLS-
FEM). The latter method was developed by Thompson and Pinsky (rf. [9]) based
on a paper of Harari and Hughes ([4]).

2. One-dimensional model problem

In this section we will consider a one-dimensional model problem and explain why
the accuracy of the Galerkin FEM deteriorates with increasing wave number k.
This non-robust behavior with respect to k is called the pollution effect and will
be defined formally in Definition 2.3. We will explain how the pollution effect
is related to the underlying discretization method. By using that investigation
we are able to construct a so-called generalized finite element method (GFEM)
having no pollution.

To fix the notation let us consider the following one-dimensional model prob-

lem
—u"—k*u=fin Q:=(0,1) (2.1)




with boundary conditions
u(0) = 0,

iku(1)+4' (1) = 0.

To apply the finite element method to this equation we write (2.1) in a variational
formulation, seeking u € V :={v € H! (Q) | v (0) = 0} such that

a(u,0) = [ "'t — KPutds + ik (1) 3 (1) = £ (v) (2.2)

is fulfilled for all v € V. Here and in the following we assume that f lies in the
dual space V' = H™! (Q).

Further, let {z;}o<;c, denote a set of grid points 0 =2¢ <1 <... <Zp = 1.
The finite element grid 7 consists of the intervals {[Zm—1,Zm|}1<men- The step

size h is defined by

We consider here only the h-version of finite elements and define Sy, as the space
of continuous functions which are linear on each interval. A study of the p-version
of the Galerkin-FEM for the Helmholtz equation can be found in [7].

2.1. The GFEM for the Helmholtz equation in 1D

The Generalized Finite Element Method (GFEM) was first introduced by Babuska
and Osborn (rf. [1]). The idea is to introduce local mappings which transform
the usual finite element basis functions to another local basis. In the mentioned
paper these local mappings were designed in such a way that the resulting method,
applied to a differential equation with highly non-smooth coefficients, converges

with optimal rate.
For our purpose we define the GFEM in the following algebraic way. The

GFEM is a method which defines a tri-diagonal matrix A € C"*" and a linear
mapping Q : ™! — C". The solution of

Au=D>

with b := Q(/f) is then identified with a finite element function by the basis
representation

uge (z) 1= X’-l—:x U & (T)
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with the usual local nodal basis {¢m}1<men Of Sn. The function ug. serves as
an approximation of the exact solution of (2.2). How the Galerkin FEM can be
written in this notation can be found in the following

Example 2.1. The Galerkin FEM is characterized by the tri-diagonal matrix
| Aij=a(;,¢:)
and the mapping Q defined by
b := (Q(f); = f(43)-

2.2. Error analysis for the Galerkin FEM

To measure the accuracy of the FE-solution we have to introduce suitable norms.
We will consider the £2 and H!-seminorm defined by

lully = [ u(@)(a) do

and
lllly = llllo -
From the approximation theory it is well known that for every function u €
H2 (Q) there exists uj, € S such that

llu — uall; < CH* lu"llg

for j € {0,1}. The dependency of the relative error on h and k is discussed in the
following

Theorem 2.2. Let the right-hand side f of (2.2) be in £* (?). We assume that
the exact solution u of (2.2) is oscillating in the sense that for 0 < s <t <2

[l et (2.3)
lully =

is satisfied. For j € {0,1}, the best approximation uﬂpt € S, with respect to the
‘HI-seminorm is defined by

iy 1= arg inf. [lu = sl

5




The function uf;pt satisfies

Ehpt = 1< C(rk)*.
=y, =0
Proof. Using (2.3) we obtain

"u — uzpt”j < Ch2-—J" “uullo < C(hk)2—j .

ey = .
=l 1O,

Remark 1. From the Theorem 2.2 we see that the accuracy of the optimal ap-
proximation depends only on the number of the elements in one wavelength of
the solution, i. e., depends only on the value k - h. To relate this value to the
accuracy of the solution is a “rule of the thumb” in engineering computations.

We say that the GFEM has the pollution effect if it is possible that ey is
small but the error of the GFEM solution is arbitrarily large. The details are in

the following

Definition 2.3 (pollution effect). For j € {0,1}, let the error of the GFEM-

solution uy, be defined by
e — el
) llull;

i
If this error can be estimated by
e}, < C1 (kh)*™ + Cok® (kR)".

with s > 0 and in addition, there exists right-hand sides for problem (2.1) such
that the corresponding finite element error can be estimated from below by

&, > Csk" (kh)°

with r > 0, then we say that the GFEM has the pollution effect.




In view of the Theorem above it is obvious that the error of the best approx-
imation is small if kh is small, while the condition 8,7 > 0 in the definition of
the pollution effect has the consequence that for sufficiently large k the quantity
k® (kh)! can be arbitrarily large, i.e. the “rule of the thumb” mentioned in the
Remark 1 does not lead to an accurate solution if k is large. ‘

The following Theorem shows that the Galerkin FEM for our model problem
has the pollution effect.

Theorem 2.4. Let the exact solution of (2.2) be oscillating in the sense of (2.3).
Let us assume that our grid is uniform, which means

h=2Zy — Tmy1 =T —Ti-1 VYm,i€ {1,2,...,n}

Let the right-hand side of (2.2) f € L2() and uguy be the Galerkin solution.
Then for hk < 1 the error estimate

ely == ﬂ’iﬁgﬂh < C (kh) + Csk (kh)?
1

holds. The error in the L£2-norm can be estimated by

0, = 1~ vaall, iu'ﬁga‘” < (Cs + Cak) (Kh)?
0

Proof. In the proof of [5, Theorem 5] it was shown that
v — ugatll, < (Clh +C (kh)2) [l"]l

holds. In conjunction with (2.3) we obtain the desired estimate of e},

The L£2-estimate was proven in [6, Theorem 4].

n

Numerical computations in [5] shows that the error estimates are optimal, i.e.
there are cases where e, and ), are bounded from below by the same pollution
term as from above. For a theoretical investigation see Theorem 2.6 together with
Lemma 2.5.




2.3. Relation of the finite element error to the discrete wave number

In this section we will explain how the pollution effect is related to the difference
of a discrete wave number and the exact one. Later, we will study this effect
in two dimensions as well. We include here the one-dimensional investigation
because the main ideas are more visible than in two dimensions. To avoid too
many technicalities we consider the following model example with Robin boundary

conditions on both sides .
~u" -k = 0 inQ=(0,1) (2.4)
—u' (0) — tku (0) = —2ik,
' (1) —iku(l) = 0.

If not stated otherwise, we assume throughout this chapter that €2 is partitioned
into intervals having constant length h. It is easy to check that the exact solution

of (2.4) is given by
u(z)=e

We consider a GFEM of the form
Du=b> (2.5)

with the (n + 1) x (n + 1) matrix D

D, N
N D, N
N D, N
D= N -
D, N
N D

-

and the right-hand side vector

b = (-2ik,0,0,...,0)".

We assume that the elements of the matrix D can be expanded in a Taylor series
of the form

Dy = b~ (1 B+ 3 o (KR 4+ (KR) - o (R 4O ((kh)2"+2)>

n=1 n=1



(2.6)
D, = k! (2 + )fj Yo (kB)™ + O ((kh)2”+2))

n=1

N = 7 (<1 56 ™ 0 (60)7))

n=1
a+bh=—3 mMn+2=-

These assumptions are very natural in view of the underlying equations. Some
comments for the first three conditions are given later in Remark 3. The impact
of the last two equations will become clear in the proof of Theorem 2.6.

The system (2.5) can be solved explicitly. For this purpose, we will use the
concept of the discrete Fourier transform to solve finite difference equations. Al-
ternatively, one could employ the theory of fundamental systems for our one-
dimensional model problem. We prefer the first method, because the discrete
Fourier transform can be extended straightforwardly to the higher-dimensional
case. In contrast to this, the theory of fundamental systems is applicable only
in the one-dimensional case because the number of homogenous solutions of a
second-order differential equation in 2-D without boundary conditions is infinite.

We start by computing the discrete symbol of a difference scheme. For this
purpose we introduce the discrete Fourier transform of a complex vector u =

{“m}mez={...,—1,0,1,-~-} by

( ) (.7:11 (E) Z ume

m=—od

For a difference scheme with constant coefficients given by

»
(Au),, = ) Aty

l=—p

the discrete Fourier transform can be computed as

(Hl) (6) = 'm-—oo Zl——p Alum+lezm€
= Zf:—p Al Z;.rc::—oo um-}-leime = Z{’:—p Ale-“f Z::—oo u’ﬂ’l-f-lei(m-H)£
= YL A TR une™ = (T, A %)@ (6).

9




The function a(£) := (Zf;__p A,e‘“f) is called the discrete symbol of the difference
operator A. Let {§}_,<;c, denote the zeros of a in the interval [—m, @[, ie.

a(&) =0
Vie {-p,—-p+1,...,p}
EzE[—?T,W[.

By the theory of finite difference schemes it follows that the vector

p .
M= 3, Cle¥™, meZ

l=—p

satisfies
Anp=0.

Simple computations yield that the discrete symbol of the difference operator
which corresponds to the GFEM (2.5) is given by

d (§) = D2+ 2N cosé.
The zeros of the symbol are given by
£==xk
with o1 D,
k= 7 arccos (_2_N) . (2.7)
The number k in this context is called the “discrete wave number”. Consequently,
u; = Cie™i + Cre™H
satisfies equation (2.5) for indices2 < j <n—1,i.e.
(Du); =0 Vj€{23,...,n—1}.
The constants C; and C; are determined by the equations
(Du), = -2ik,
(Du), = 0,

10




in other wofds, by the boundary conditions. They are given explicitly by

_ ke"".‘ (D1 +Neil-¢h)
~ DZsink+2D; N sin(k(1—h))+N? sin(k(1-2h))

G

(2.8)
—kek (D14 Ne—ikh))

Cy= (D?sin k+2D; N sin(k(1—h))+N? sin (k(1—2h))

with h := 1/n.
To summarize the explanations above, we state that the solution of our tri-
diagonal system of linear equations (2.5) is given by

u; = Cie¥ 4+ Ce™, 0<j<n, (2.9)

where the discrete wave number k is given by the zeros of the discrete symbol of
the underlying difference operator and is independent of the boundary conditions.
The boundary conditions then determine the constants C; and C,.

Now, we will study the relative error of the GFE-solution in the L%-norm given
by

e*e - 2o uids (@)
%= ] '

The functions ¢; are the usual linear nodal basis of the finite element space Sp.

It turns out that the error e is directly related to the distance of the wave
number k from the discrete wave number k. Therefore, before we start to estimate
eo, we will estimate k — k. The details are given in the following

Lemma 2.5. Let kh be bounded and conditions (2.6) be satisfied. Then either

k—k=0

or there exist constants qo,q; independent of k and h but possibly dependent on
v and § of (2.6) such that

aok (kR)* < [k — F| < ik (kR)*
with sg > 2.

For the Galerkin-FEM the estimate above holds with s, = 2.

11




Proof. The discrete wave number was given by (2.7). In view of that equation
we compute the quotient £2. Using (2.6) we get

D, 24+ 3% 4, (kh)* (1 2, w— 2
——— I — L = 1 + - + 6 ) kh + 8 kh .

The modified wave number, given by

arccos (1 + (171 + 51) (kh)? + i Ps (kh)2’) ,

k=
2 8=2

& -

can be expanded about kh = 0 as

k= % (\/(—71 — 26;)kh + i L (kh)”“) :

s=1

Now it is clear why we imposed the fourth condition in (2.6). Under this assump-
tion, the term {/— (1 + 26;) = 1 and the discrete wave number converges towards
k as h — 0. The equation above can then be written in the form

kE—k =0 (k(kh)™)
with even sg > 2. Only in the case of ¢, = 0 for all s > 1 we obtain
k—k=0.

In [5] it was shown that for the Galerkin method k=k+O (k (kh)z) holds if kh

is bounded. B
In the sequel the number s; is given by the Lemma above.
Now, we will estimate the relative L2-error ey from above and below. The

details are in the following

Theorem 2.6. Let us assume that the considered GFEM has the property k # k.
This means that s,, defined above is finite. Let kh and k (kh)*® be bounded and

k sufficiently large.
Then, the error e, of the GFE-approximation of the solution of (2.4), namely

ez can be estimated by

a|k—1"c|5e050(kh)2+é|k-k|.

12




Proof. For the following analysis, we will use the interpolant uf,, of the func-
tion e**, i.e.

Ui (7) = ZO e“ihg; (z) .
J:

Using the fact that [e** " =1, the error e, can be estimated from above by

o = ||t — e+ e -k, +uky, — S0 oué;(a)
(2.10)

k

int Ufne — Lj=0 ;%5 (T) " .

We will now estimate the three terms on the right-hand side above separately.
Considering the first term we get:

2 . .z . .z
- fol (etkz _ ezkz) (e—tkz _ e—:kz) dz

=2(1-“‘—“@°—‘9).

k—k

+

.<_. II eik:z: _ eifcz eil'cz —u

|+

eikz — eil’cz

(2.11)

By our assumption we know that k — k is bounded, thus the Taylor expansion

about k — k = 0 results in
<t o (e-1).

The second term on the right-hand side of (2.10) can be estimated by using a
standard interpolation argument
. 4
(ezkz)

Using k = k + O (k (kh)*) (see Lemma 2.5), we obtain

ezkz _ etkz

ik k
= Uipt

< Ch?

‘:C(hic)z.

€

< C(hk)?.

ikz k
€ — Uiy

For the last term in (2.10) we proceed as follows:

2
n -

=Y (uf,,t — u)l Mim (uf‘,,t‘ - u)m

I,m=0

ufnt - Z uj¢j (12)

=0

13




with the mass matrix M defined by
‘ 1
My = [ ¢(@)¢;(a) dz

and (uf‘nt)m := uf, (hm). It is well-known that if the FE-space corresponds to a

uniform grid, the £2-norm is equivalent to the weighted Euclidean norm, resulting
in

k
int

2

—llp.

2
. n n . 2
ufut - Zuj¢j (.’B) <h E (ufnt - u)ml =
j=0 m=0

The norm ||-||,» is called the I2-norm. For a vector u, we introduce the convention

n
wmllfe = b 3 fuml*.

m=0
Using the definition of uf, and (2.9) we obtain

oy . _.E-
gikih 12+|02|||e ikjh

eikih _ Cletk]h _ Cze---zkgh"rz < |1 _ Cll

uby — Y w0 (2)

=0

<

2’

Direct calculations yield

ikil? | ikjh2 <
¥, =Y [ =hY} 1=(n+1h<2
3=0 j=0

thus,

uk, =S w8 (2)] < 2(1-Ci| +Cal).

=0
Let us first estimate the constant C; of (2.8):

—kei (D1 + N e"";")
Cy = _ _ _ :
D?sink + 2Dy Nsin (k (1 — h)) + N?sin (k (1 - 2h))

Replacing k by k + € and inserting the formulae for D, and N (cf. 2.6) into the
definition of C, and expanding C, as a Taylor series about € = 0 and hk = O,we
get

14+2(ag + B1)

1 kh+C (kh)?.

G- |

14




In view of this representation it is clear why we imposed the fourth condition in
(2.6). The constant C, then can be estimated by

C, < C (kh)?. (2.12)
Applied to |1 — C;|, the same arguments results in
11— Ci| < C (kh). (2.13)
Combining all estimates above we conclude that the inequality

ke _ Z (Cl eu'cjh + Cze-ifcjh) é; (z)

§=0

<C(kh) +C k- k|

is fulfilled, completing the proof of the upper estimate.
For the lower estimate we proceed in the following way. The error o can be
written in the form

€y =

J=0

- = b ik 2
(= - Cree — Coe™) + (Cle"" + Cae™* — 3 u;4; (z))

By definition we have that 37, u;4; (z) is the interpolant of C ek + Cye—ik=.
Therefore, we know that

- - n
Cle"‘” + Cge""’ - Z Uj¢j (x) S Ch2

=0
Using (2.12,2.13) we obtain that

(Clieil-cz + Cze-il-cz)"

l < C (kR (1G] + |Cal) -

. - n
Cle"‘” + Cze—tkz - Z llj¢j (:L‘) < Cint (kh)2 .
=0
Thus, ey can be estimated by
€o Z'"eikz _ Cleil'cz _ Cze—il'cz"_ - (kh)2 > min leikz _ ueil’:z _ ve—il’cz —Clins (kh)2 )

u,veC

Let L := H%J . -2;’1 where |g] denotes the largest integer less than or equal to ¢.
Let ||-||, be defined by

s = [ (@) ().

15




Using this norm, ep can be estimated by

—ikz

- .3 2
e** — uett® — ve !L — Cint (KR)*.

ep > min

u,weC

The computation of this minimum is easy in view of the orthogonality of %= and
e~z on (0, L). Introducing € = k — k, we get that the minimum is achieved for

eicL -1
teL

L i(k-k)e
= = dr =
Ug L/O €

ei(27c+e)L -1 eieL -1

i(%k+¢)L T2k L

1 (L i(k+l.c)z
= — d.’l) —
Vo T /0 €

We assumed that k is sufficiently large, therefore L = |.2_§r°.| Z>C [%J -2 s
bounded away from zero and the minimum above can be computed to

= 1 —|uof* - |wl

min | ez — yethT _ ye—ikz L

u,veC

_ \ll —2(1 —cos(eL)) ((e;,)2 + ((2l'c+1e)L)2)

> Ce.
Combining the above estimates we obtain that
e > Ce—Cint (kh)2 .

For sufficiently large k the term Ciy, (Ich)2 becomes negligible compared to € =
O (k (kh)®), resulting in
eo > Ce=Clk — |

completing the proof.
n

16



2.4. A stabilized finite element method

In view of Theorem 2.6 it is clear that a GFEM with no pollution term in the

error estimates must satisfy ;
k—k=0.

This is equivalent to

% = —2cos (kh) . (2.14)

Of course, the analysis of the model problem (2.4) guarantees that the arising so-
called “stabilized finite element method” (SFEM) has no pollution only for this
special example. However, two of the authors considered the more general problem
(2.1) and showed that if (2.14) is fulfilled, it is always possible to discretize the
boundary conditions and the inhomogeneous right-hand side in such a way that
the GFEM has no pollution. The details are in the following

Theorem 2.7 (stabilized finite element method). Let us consider the prob-
lem (2.1). Let the interval (0,1) be partitioned using the grid points 0 = zo <
z; <...<z, = 1. Here, we do not require a uniform grid. Let the n X n system
matrix D*4® be given by

( in(k(zi+1~2i—1)) ¥ SR
siﬂ(k(x?fl-;)-;lsinfk(;:.-—z,-_l)) ifi=j<n,
~ik(2n-2n-1) cpe
petas _ _Kh R ) ifi=j=n,
WoT 2tan £ {
1 et sl
T iflj-il=1,
L 0 otherwise

and the mapping Q** by

h min(i+1,n) tan (kﬁg_-_;@_ﬂ_) Zyn . f (.’E) dr

Tn—

Q) = .
( )t 2tanit = Tn — Tm-1 (T — Tm—1)

The corresponding GFE-solution u is defined by




while u denotes the exact solution of (2.1).
Under the assumption that the right-hand side of (2.1) f € #' (0,1), the error

estimate
|« — 5 ws9s]

[lull,
is satisfied. Obviously, this so-called stabilized finite element method (SFEM) has
no pollution.

L < C (kh)

Proof. The proof of this Theorem can be found in [2, Theorem 2.3].

Remark 2. In the case of a uniform mesh, for the SFEM, the quotient Dy/N

satisfies
D,

N = —2cos (kh) .

3. The GFEM to the Helmholtz equation in two dimen-
sions

In this section we consider the Helmholtz equation on a square of side length 2L
—Au—ku=f inQ= (=L, L) (3.1)
with boundary conditions

)
ayiku + ﬂ,é—';- =g, onT, for s € {1,2,3,4}. (3.2)

The boundary pieces I', are depicted in figure (3.1) where the symbol % means
“outside normal derivative”.

Let Q be partitioned into squares of side length h = % forming the finite
element grid 7. The space of finite element functions Sy, is defined by continuous,

piecewise-bilinear functions corresponding to the grid 7. The grid points are
defined by z,; := h(t—1,5s—1)". The local basis functions are denoted by

{@s.t}1<o1<n a0d satisfy the relation
1 if (s,t) =(s,1t)
Ps it (zs',t’) =

0 otherwise.
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Figure 3.1: Domain Q with boundary and normal directions

A finite element function u € Sj, can be identified with a vector {u,;}, st<n by

the basis representation
n

u(z) = 3 Updes(T)- (3.3)
8,t=1

The GFEM is a method which defines an n? x n? matrix A and a linear mapping

Q which maps the right-hand sides of (3.1,3.2) onto the vector of the right-hand

side b, i.e.

b=Q(g’f)

The solution of the linear system
Au=b>b

is identified with a finite element function by (3.3) which serves as an approxima-
tion of the exact solution of (3.1,3.2).

The dimension of the system matrix is n? thus, each grid point z,; can be
associated with one equation. If the grid point z,; is an interior grid point, i.e.
not lying on the boundary, then the corresponding equation can be written in the
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form 1
at ",y A+ +Aatust+l +Ag Usi1,t+1

1,0 1.0
+ Aj: us—lt +A) 'tuat +Ai,t‘lla+l,t
_l —
+ Ay us—lt— +Aat g1 +Ag: Uspr-1 = bs s

If the grid point is lying on the boundary T, then those elements of AS;;') which

are multiplied with values of up , with (¢ —1,p — 1)T ¢ Q2 have to be set to zero.
This means that the system matrix of a GFEM is set up by defining all interior

43 1”?
stencils A_l 1 Ag:tl A::tl
A = A::"’ Ai A }
A At Ay
all edge stencils

edge __ —1 0 0 0 1,0
A Ay Agy Agh

A7 AN Al
0 0 0

At AY 0
A® A“"’ 0], et
At 48 g

and all corner stencils

0 AY Al A7t AY O
, etc.

Ag?trner= 0 AOO Aa, A—IO AOO 0
0 0 0 0 0 0

The quality of our GFEM approximation depends on the coeficients AS',{) and the
definition of the right-hand side vector. We impose the following restrictions on
the stencils A,; and mapping Q.

A1l The interior stencils A’"‘e"“" which depend on k and h, satisfy the following
symmetry condition

Ainter:‘or e—

A A A
Ay A A,

Ay A A,
] 54

and have the same values for all s and &.
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A2 Let us assume that the right-hand side f of (3.1) is zero. Then, the lin-
ear operator Q is local in such a way that if z,, is a grid point satisfying
dist (z,4, ') > 2h then the corresponding entry b, of the right-hand side
vector is zero.

A3 We assume that the interior stencils of the finite element matrices A"

can be expanded as a Taylor series of the form

(i) Ao = Toop (Ao)yn @™,
(ii) A1 = T (A1), 0™,
(iii) Ay = To_g (A2)y ™™,
with o = kh and (4,),, independent of k and h for all t € {0,1,2},m €
{0,1,2,...}. :

A4 We assume that the principal part of A, i.e.

(A2)y (A1) (A2),
(Al)o (AO)o (Al)o
(A2)p (A1) (A2)o

is an approximation of the principal part aq (u,v) = [, (Vu, Vo) dz of con-
sistency order 2, implying

Aprincipal =

(A_O)o > 0:
(Ao)o +4((A1) + (A2)y) = 0, (3.5)

—(A1)y—2(42)y = L.

These restrictions are very natural considering linear finite elements. Some
comments are given in the following

Remark 3. Condition Al reflects to the rotational and translational symmetry
of the Helmholtz equation and the mesh 7.

Condition A2 reflects the fact that the discretization of the boundary condi-
tions has local influence to the right-hand side vector.

Condition A3 reflects the fact that the Laplacian and the identity operator are
of even order.

Condition A4 is the usual consistency condition if “—A” is discretized by linear
elements.
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4. Approximation of the Helmholtz equation by the GFEM

In this section we will investigate the dependency of the accuracy of the GFEM
on the matrix stencils. To measure the accuracy, or the difference between the
GFE solution and the exact solution, we introduce a weighted £*norm defined

by
ol = [ 22 gy
o 1+ |z
This weighted norm reflects the fact that in this paper our aim is not the modeling
of the DtN boundary conditions and their discretization but to discretize the
Helmholtz operator in the interior of the domain in an optimal way.

To specify the quality of our GFE discretization we will use some tools of the
theory of the (integral) Fourier transform and the discrete Fourier transform. We
give here only a short summary of the theory presented in [2]. The symbol of the
Helmbholtz operator is given by

o (§) = llll* — &2

where £ € R? and ||¢]* := & + &
In Condition A1 of the previous section we assumed that the interior stencils
of the GFE-matrix have constant coefficients, i.e.

A A A
Aintterior — 2 ! 2 ]

A A A
Ay A A,

where A, only depends on k and h. The discrete symbol of the corresponding
difference operator is given by

Ostencit (€) 1= Ag + 2A; (cos &y + cos &) + 4A; cos € cos &
Let N, be defined as the scaled roots of the operator symbol o:
N = {€€R? |0 (h7') = 0};

in other words Nk is a circle centered at the origin with radius kh.
Further, let Nyencit be defined as those roots of oytencit lying in the square
(—kh — €, kh + €) X (—kh — €, kh + €) where ¢ > 0 has to be chosen sufficiently
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small such that N, is a simple connected line. The maximal distance between
these curves defined by

D (stencil) := D (Nia, Natencit) := Joax ef\fnin )

cost
a()-d @
can be considered as a measure of the approximation quality of the GFEM for the

Helmholtz equation in the interior by the GFEM difference operator. The details
can be found in the following

Theorem 4.1. Let Ao be the interior stencil of a GFEM to solve the Helmholtz
problem

—Au—-FKu=finQ :=(-L,L) x (-L,L) (4.2)
with boundary conditions
Bu=g (4.3)
which should imply existence and uniqueness of the solution.
a) Then there exists L < 0o, a right-hand side f, and boundary data g such
that the error of the GFE-solution uj, can be estimated from below by

= gl 2 €y 2

On the other hand there exists a function u in the finite element space which
satisfies
s — el < CakR?,
where the constants Cy and C, are independent of k and h.
b) The function D (stencil) can be expanded accordingly:

D (stencil) =1y, (kh)** + 0 (k)2
with constants r; depending on the stencil coefficients (Ay),, fort € {0,1,2},m €
Ny (cf. Condition A3) but not on k and h. Further, 1< ly < oo and the coefficient

Tl 75 0.
c) Asymptotically (i.e. for sufficiently small kh) the error |lu — ugel|_ can be

estimated by

llu = wsell. = CiCotencaVk (Kh)" .
Consequently, if kh is small enough, the error of the best approximation could be
small, but for sufficiently large k the error of the GFE-solution could be arbitrarily
large.
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Proof. The proof of this Theorem is given in [2, chap. 3].

The theorem can be interpreted as follows. Let a GFEM be given. Then the
following situation can arise for given right-hand side f and boundary data g.
We want to compute the solution of (4.2,4.3) with an accuracy of . Then by the
approximation property of our finite element space S, we know that if the number
of elements is larger than ng there exists a function us € S satisfying

”'U: -_ uopt” S €. (4.4)

Then, the number of elements ngrem to guarantee that the GFE-solution also
fulfills (4.4) has the property that the ratio ngrem/ne behaves asymptotically

like n )
GFEM ~ ¢ io/fl T
L]
Obviously the ratio l‘ﬁffﬂ goes to infinity with increasing k. We conclude that
the function D (stencil) is a well-suited measure of the approximation quality of
the GFE discretization to solutions for the Helmholtz equation.

5. A generalized finite element method having minimal
pollution

Based on the theoretical results of the previous section we are now able to con-
struct a GFEM having minimal pollution. To be more concrete we will define an
interior stencil such that D (stencil) is asymptotically minimal. .

By Assumption A3 of Section 2, Ag # 0, therefore the quotients a, and a, are

well-defined by

Using A4, a; and a; can be expanded as
‘ (o o}
a1 =Y A (KR)™
m=0

and ”

gy =Y tm (kR)™™. (5.1)

m=0
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Note that condition (3.5) implies that

1 +/\0 + = 0
(5.2)

/\0+2L0 75 0.

In view of the definition of D (stencil) (cf. 4.1) we introduce the function dist (—, ) =
R{ by
cos 3
kh ( sin 3 ) B El

The function dist can be expressed explicitly by the expansion

dist (0) =, min

stencil

3 o () (k)™

m=1

dist (B) :=

Before we define the coefficients r,, = T, (8) we introduce Kn, 7, and papm by

—cos28)" ~gin?8)"

= = —_—
Kn = (2n)! Tn = (2n)! (K’ * T)n = Zm=0 KmTn—m
60,m ifn= 0,
Ponm =
r.<rx...%xT otherwise
e et
2n— fold convolution/ .,

with 4, m denoting the Kronecker delta.
Formally we set o = 1. Then, all other coefficients ry, (3) are given by the
condition

! l-n

Kn+ Ta
> 2 pm (,\,_,,_,,, — +u_,.-m(n*r),,)=0 Vi1l (53)
n=0m=0

We state that condition (5.3) can be written in the form
- 1'12-@ (Ao +2¢0) +l.0t. = 0. (5.4)

The abbreviation l.o.t. denotes the remaining sum of (5.3) containing only func-
tions r; with j < I—1. In view of (5.2), relation (5.4) serves as a recursive formula
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for the functions r;. The proofs and development of these formulae can be found

in [2, Appendix]. :
In the mentioned paper it was further proved that, for bounded kh < ay,

_max 7, (ﬁ)| ; (5.5)

D (stencil) := _max dist (B) < C (kh)**!

where the largest possible value of l; is 3.

To summarize this section, we state that the quality measure D (stencil) can
be explicitly computed by formulae (5.3) and (5.5) for each generalized finite
element method.

By the consideration above it is clear that an asymptotically optimal interior
stencil has to be designed such that r; (8) = r2 (8) = 0. According to condition
A3 (cf. Section 3), we had assumed that the interior stencil Ajpterior Can be written

in the form

A A 4] o Amz At Amp

Ainterior _ A A A | = Z (kh)2Aimnterior= Z (kh)zm Am,l Am,O Am,l ’
A, A Ay m=0 m=0 Am,z Am,l Am,2
(5.6)

where the interior stencils A% in the expansion above are independent of k
and hji.e., An,, are in general complex numbers. In the following we will use
a :=kh. ,
We define the interior stencil ABErier of the quasi—stabilized FEM (QSFEM )
by .

Ay = 4

_ c1(a)s1(a) —ea(a)sa(a)
Al = 25t ) —a (@@ @5 (5.7)

A, = ca(a)+s2(a)—ci(a)—s1(a)
2 cz(a)sz2(a)(c1(a)+s1(a))—ci(a)s1(a)(cz2(a)+s2(a))’

while the auxiliary functions c;, s, ¢2, and s, are defined by

p

¢1 (@) = cos (a cos 11'5) 81 (@) = cos (a sin &

¢z (@) = cos (a cos ?—2) s (@) = cos (a sin %) .

The function A; and A, be expanded according to (5.6) because cos is an even
function. The first terms of this expansion, i.e. the stencils A% for m < 4,
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are given by

1 _4 1 T _ 2 17
A:')nterior — _2 45 _2_ Ailnterwr — __%._i (1)25 _359.5_
s A R 4
5 5 5 250 125 250
___s8o1 _ 2549 ___801
Ainterior _ _ny v _BR
I e T T
50000 50000 50000
- ___ 76313 _ 473849 ___ 76313
Ainterior _ B S '
00000 y3meg A0
L 22500000 45000000 22500000
_ 826713271 __ 5094901033 __ 826713271
yinteror _ | _ TUSOO0000. 2376000000000 TSg0fgp00600
4 T | RN scosconoss  _ ZHSENN8990%0
1188000000000 2376000000000 1188000000000

The properties of this stencil can be found in the following

Theorem 5.1. Let AZI, be defined by (5.7). This stencil has the property
that the functions ry, (3) defined by (5.3,5.4) satisfy

’I’](,B)E’l‘g(ﬂ)EO
rs (B) = Soures

774144 "
The quantity D (Ag‘,‘f,g’,?}) can be estimated by
D (Alerion) <1.3-107° (kh)" + 0 ((k)?).

Proof. The proof is purely technical but simple, therefore we give here only
an outline of it.

interior Ainterior

. ' . A .
First one has to expand the quotients 4—13==st and 4 ity & according
QSFEM g QSFEM J]g

to (5.1) to obtain the coefficients A, and tm. The proof then is completed by
computing the functions 7y, (3) using the recursive formula (5.4). W




6. Numerical Results

In this section we will present the results of an implementation of different GFEM
to approximate the following problem

—Au—k*u=0in Q:=(0,1) x (0,1) (6.1)
with boundary conditions

Ou
) _—= [ :=00. .
iku + 5, = 9 on 0 (6.2)

The function g depends on the parameter # and is given by

[ i (k — k) e if z €Ty :=(0,1) x (0,0),
i(k+ k) etrtkem)  if g e Ty = (1,1) x (0,1),

i (k+ k) eirzithe)  if € T3 :=(0,1) x (1,1),

i(k — k) 2™ if z € Ty := (0,0) x (0,1)

with (ki, k2) = k (cos8,sin 6).
The exact solution of this problem is

Ueg (T) 1= eilk1m1+kaza),

6.1. Discretization techniques for the Helmholtz equation

We discretize the domain 2 by squares of side length h = -1 and use bilinear
elements. Consequently the system matrix has dimension n?. We implemented
the following three discretization methods.

1 Galerkin Finite Element Method
Writing (6.1) in a variational formulation and incorporating the boundary

conditions results in the following problem.
Find u € H! () such that

VuVv — k*uvdz + ik | uwvdly = | gvdl,
Q r r

28



is satisfied for all v € ! (). Replacing the infinite-dimensional space H! (Q) by
the finite element space S, of bilinear elements and introducing the usual local
basis results in a system of linear equations for the coefficients u of the basis
representation (3.3). This method can also be described in terms of stencils. The
interior stencil for the Galerkin method is given by

-4 <4 - 14

interior ,__ | 1 8 _1 | _ 211 4 1

= '_[_i 50 ""”[111}'
3 3 3 36 9 36

A similar computation as explained in the proof of Theorem 5.1 yields the fol-
lowing estimate for the quantity D (stencil) which describes the approximation
quality of this method for the Helmholtz equation.
R 4 3

D (A;r;ltenor) — (kh)s __f%aﬂ)éw 3+ C;;( ﬂ) +0 ((kh)5) - i%i)_ +0 ((kh)s) i

2 Generalized Least Squares Finite Element method (GLS-FEM)

In [9], Thompson and Pinsky have generalized the GLS-FEM, originally intro-
duced by Harari and Hughes in [4] for a one-dimensional model problem, to the
two space dimensions. Applied to problem (6.1) discretized by bilinear elements
this method can be written in the form:

Find u € S; such that

/n VuVv — Tuvdz + ik /r wvdlz = /r gudl',
is satisfied for all v € Sj,. The parameter 7 = 7 (k, h) is given by

4 — cos (kh cos %) — cos (kh sin %) — 2cos (kh cos -’g) cos (kh sin -’é)
(2 + cos (kh cos %)) (2 + cos (kh sin %)) h? .

The interior stencil for the GLS-FEM can be written in the form
To compare this method with the standard Galerkin-FEM we state that

7(k,h) =6

1

S}Ir—«:l-—gb-

ot
O O |t O e

-1 1 1
ACHS S EM = [ _% gl "'% :l — k7 (k,h)

—h?r = — (kh)® — 1_16- (hk)*+0 ((kh)s)

29




which means that the GLS-FEM for bilinear elements is a higher order modifi-
cation of the interior stencil of the Galerkin FEM. The approximation quality of
this method to the Helmholtz equation in terms of D (stencil) is given by

cosg(:,@) (kh) +0 ((kh) )

D (AB{S % er) = (kB)’ +0 ((kh)°) =
and hence the pollution is essentially the same as for the Galerkin FEM.

3. Quasi-Stabilized Finite Element Method (QSFEM)

The interior stencil of this method was already presented in Section 5. Here
we describe only the modeling of the boundary conditions and the assembling of
the vector of the right-hand side. This is done analogously to the finite difference
method by replacing the normal derivatives by a difference formula centered at the
edge points and then eliminating the fictitious points. This technique is described
together with an error analysis in [3, Section 4.7.2].

We recall that the approximation quality of this method was proved to be
cos 83

8
70;2154 +0 ((kh)°) = 774144+0((kh)9). (6.3)

—w<ﬂ<w

D (Aterien,) = (kh)'

r<ﬂ<w

6.2. Numerical evaluation of the GFE methods for the Helmholtz equa-
tion

In order to measure the accuracy and compare the presented methods we have to
introduce suitable norms. A natural measure of the approximation error of (6.1)
is the energy norm, i.e. the usual #'-seminorm

_ ez — 'U'felll
llwezll,

with
2 ._ R vir
lullf := /Q Vu (z) - Vi (z) dz.

Alternatively we will measure the accuracy of the solution in the L2-norm

 ltes — ugellg
"uezllo

with

Jully = [ v (@)t () da.
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Recalling the one-dimensional results (cf. Section 2) we expect that the error
of the best approximation behaves like

.

”uea:lll

and .

thez — ugﬂt“o
l|uezllo

In the one-dimensional case, the error of the Galerkin-FEM could be estimated
by

< C (hk)®.

e1 < C (kh) + CK2h (kh)

and
eo < C (hk)? + Ck (kh)®. (6.4)

Obviously, the pollution of the #!-error becomes negligible if ¥%h is small, but in
the pre-asymptotic range we expect that the Galerkin solution differs substantially
from the best approximation.

For the L£2-error the pollution term is the dominant term in the error estimate
for all values of h. We expect that, with increasing value of k, the distance of the
graph of the Galerkin error from the best approximation error increases.

The error of the GFE solution depends on the direction # of the wave vector

k, where
k = (k1, k2)” = k (cos §,sin ).

It turns out that for special values of # the GFE solutions effectively coincide
with the best approximation, where for other values of # the GFE solution differs
substantially from the best approximation. Unfortunately, the direction # is not
known a priori. In order to guarantee that the error of the GFE solution is under
control (i.e. the solution is reliable) one has to assume that the error is sufficiently
small even if the solution would correspond to the value of § with the largest error.
Therefore for j € {0,1}, we have computed the quantity

max __ .
€ = _Mmax e (w).

Here, ¢, (w) denotes the error of the GFE solution of problem (6.1,6.2), where the
parameter 6 for the right-hand side g is chosen as w. The exact solution in this
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case is given by
Uer (:L‘) — e;k(:n €08 W2 smw).

We approximate the maximum above by choosing the set of w-values
o513 1 3m)

16’8’ 16’4’ 8
Due to the rotational symmetry of our problem we know that the error corre-
sponding to a direction 6 is the same as for § +m7 for integers m. The maximum

above is approximated by

~—
"
[ua)

ef> ~ max e; (w).
We restrict the step size h to x
hk < —.
-2

This assumption is natural because it guarantees at least four elements per wave
length (see Fig. 6.1).

0.8
0.6
04
02
0
0.2

Approximation of sin(x) by linear elements with 4 elements per wave length
1
0.4
0.6

/ \ C sin() — -
/ \\ linear interpolant ~---- |
4 N .
08

-9 1 1
0 1 2

T L] T T

L] 1 L} L]
A 1 'l 1

Figure 6.1: Approximation of sin(x) by the piecewise linear interpolant with four
elements per wave length.

For larger values of h the error of the best approximation would be too large
for practical applications.

Figure 6.2 and 6.5 show the H!-error, resp. L2-error of the three discretization
schemes and of the best approximation for k¥ = 30,100,150. The plots consists
of groups of four lines, where the lowest line always corresponds to the best ap-
proximation, the next one corresponds to the QSFEM, the third belongs to the
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GLS-FEM and the highest line always corresponds to the Galerkin solution. We
see that the error of the Galerkin solution behaves as expected. The H'-error
differs substantially from the best approximation in the pre-asymptotic range,
while this range increases for larger values of k. On the other hand the pollution
becomes negligible if h is sufficiently small, since. k®h is small. The situation for
the £2-norm is different. Here, the pollution does not vanish as h — 0. The lines
becomes parallel (in our log-log plot) for small values of h whereas the distance
from the best approximation increases with higher wave number k for all A in
accordance with the theoretical estimate (6.4). '

The improvement of the QSFEM is obvious. The size and range of the pol-
lution even for k = 150 is very small and remains nearly constant for different
values of k. For the £2-norm this behavior can be observed from the constant
(w.r.t. the wave number k) distance between the graph of the best approximation
and the QSFE-solution.

The GLS-FEM shows nearly no improvement over the Galerkin FEM for rel-
atively large values of hk ~ /2, while the pollution decreases faster with respect
to h than for the Galerkin FEM. These numerical results are in accordance with
the different sizes of the theoretical quality measure D (stencil) computed above.
The pictures (6.2-6.5) can also be interpreted as follows. Let us assume that we
want to approximate the solution of our model problem with an relative error of
¢ in the £2-norm. Then we can ask how many degrees of freedom (DOF) are
necessary to get this accuracy. The following table shows this dependency for
some values of e.

DOF necessary to obtain an accuracy of € in the £*-norm
k =100 k =150
¢ || BAJQSFEM | GLSFEM | FEM || BA | QSFEM | GLSFEM | FEM
30% || 45% | 632 1422 279% || 68° | 97% 258 512°
10% || 71 | 100° 248° 485% || 105% | 148° 449° 879°
5% || 92% | 140° 3574 685% || 140° | 209* 634“ 1240°

As mentioned above the error of the GFE-solution depends significantly on the
wave direction 6. In the following plots we illustrate the pollution effect depen-
dent of the parameter §. For constant kh we know that the error of the best
approximation in the H!-norm is of order kh. We have chosen kh = 1.5,0.7,0.3,
where kh = 1.5 = 7/2 corresponds to four elements per wave length, kh = 0.7
to eight and kh = 0.3 to 16 elements per wave length. In Figures 6.6-6.14, we
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have plotted the difference of the GFE-errors from the best approximation error.
We see that the Galerkin FEM is relatively independent of the parameter 8 but
the difference from the best approximation is significantly for all considered cases.
The difference of the GLS-FE solution from the best approximation is practically
zero for 6 = %, %", where for 6 = 0, Z, % it is especially for kh = w/2 practically as
bad as the Galerkin FEM. The scaling of the axes of the GLS-FEM plots and the
QSFEM plots is always the same. We see that for the considered range of k the
QSFEM has practically no pollution. The difference from the best approximation
is small for all considered values of § and is fairly steady with the wave number
k. In contrast to, e.g. # = 0, the difference of the GLS-FE-solution from the best
approximation increases with higher wave number k which means for this method
it is not sufficient to restrict the quantity kh to get a small error. Figures 6.15-
6.23 shows the dependency of the pollution on kh and 6 in the L2-norm. One can
observe that the pollution of the QSFEM is even smaller than in the #'-norm,
where the behavior of the GLS-FEM and Galerkin FEM is quite similar.

6.3. Conclusions and Remarks

In this subsection we summarize and comment on the numerical results and relate
them to the theory presented in the previous sections. In Section 2 we had ana-
lyzed a one-dimensional example which shows the typical pollution effect for the
GFE-approximations. We have seen that if we are able to design a GFEM which
has no pollution for this example it will also have no pollution for more general
cases (cf. Theorem 2.7) if we treat the boundary conditions and an inhomogenous
right-hand side in an appropriate way. On the other hand we have proven that if
the discrete wave number and the exact one are not the same, then the pollution
cannot be avoided by any treatment of the boundary conditions.

In the two-dimensional case we have seen that a necessary requirement to get a
small pollution is to minimize the maximal distance D of the zeros of the discrete
symbol and of the operator symbol. We were able to design a GFEM called
QSFEM such that D is minimal. On the other hand we have not investigated a
special treatment of the boundary conditions. Nevertheless, from the numerical
results presented above it follows that even a straightforward treatment of the
boundary condition (centered differences) results in a GFEM with a negligible
pollution effect for moderate wave numbers. We conclude that on the one hand the
pollution effect for the FE treatment of the Helmholtz equation is not avoidable
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in principle, while on the other hand it is possible to design the QSFEM having
a pollution which is not visible in practice.
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